Hi-C Used to Assemble Extremely Large, Difficult Barley Genome

Barley is the 4th most cultivated plant in the world and has been a reliable food source for over 10,000 years. Genome Web reports on the exceptional state of the genome assembly and how researchers used Hi-C technology to tackle this extremely complex genome.

 

The barley genome, like many other grains, is notorious for being extremely difficult to assemble due to extensive polyploidy, long repeat regions, and its large genome size (5.3 Gb). However, the Barley Genome Sequencing Consortium (IBSC) used Hi-C to tackle this genome assembly, producing chromosome-level scaffolds representing over 95% of the genome in an attempt to understand the biology of this widely cultivated plant. After completing the assembly, the researchers began annotating the genome and identified over 87,000 different genes, publishing their findings in Nature.

 

Obtaining reference-quality assemblies for complex genomes, such as barley, used to be an extremely challenging endeavor. With Hi-C, obstacles like polyploidy and multi-Gb genomes are manageable due to its ability capture ultra-long-range genomic contiguity information from unbroken chromosomes, replacing the need for genetic maps. This ability enables researchers to answer questions otherwise difficult or impossible, including structural variation, complex gene structure, gene linkage, gene regulation, and more. While the researchers performed the barley assembly themselves, Phase Genomics’ Proximo Hi-C service makes it easy for any researcher to obtain similar results and has been used to assemble hundreds of genomes to chromosome-scale over the past two years, including complex genomes like barley.

 

Read more about the barley genome on Genome Web.