Application Note

Discover more metabolic features with proximity-guided
metagenome deconvolution

The ProxiMeta™ Platform unlocks the functional potential of metagenomic
samples by enabling significantly improved annotation. This is accomplished
through improvements in metagenome deconvolution, enabled by proximity
ligation technology.

Introduction DNA. As a result, computational pipelines have to rely on
a priori knowledge, statistical assumptions, and binning

The analysis of microbial communities is becoming algorithms to reconstruct genomes. During annotation,
integral to our understanding of complex organisms genes and metabolic modules are either missed or cannot
and environments. Increasingly sophisticated sample be assigned to the cells from which they originated. This
preparation, sequencing and computational tools are leads to an incomplete and/or inaccurate analysis of
enabling us to answer questions beyond the identity and metabolic pathways associated with individual or multiple
relative abundance of the species and strains present members of a complex microbial community.
in a metagenomic sample. Gene-level information for
individual organisms sheds light on microbial evolution To overcome these challenges, Phase Genomics'
and horizontal gene transfer, global and local microbial ProxiMeta Platform’ employs proximity ligation (Hi-C) data
migration patterns, and enables the identification and to guide metagenome deconvolution?® (Figure 1). This
characterization of critical metabolic pathways. technology is able to deconvolve DNA sequences from

_ mixed communities using physical interactions captured
Functional analysis of metagenomic samples is hampered prior to cell lysis. This results in significantly improved
by the loss of intracellular contiguity information during genome recovery and quality, as well as superior
sample preparation, caused by the bulk extraction of input  metabolic pathway analysis from metagenomic samples.

Shotgun Assembly

Figure 1. Overview of proximity-guided metagenome deconvolution. A. Proximity ligation (Hi-C) libraries are generated from a mixed
microbial sample. Interactions between DNA fragments present in the same cell are captured by crosslinking. B. Digestion and ligation
creates chimeric junctions that are sequenced and analyzed with short- or long-read shotgun assemblies. C. The proximity ligation data
provides an additional layer of information used to deconvolve chromosomes and plasmids into complete genomes, with higher accuracy
than traditional binning approaches.
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Library Preparation and Sequencing

To demonstrate the advantages of the ProxiMeta™
Platform for metabolic discovery, a fecal sample

was obtained from a healthy human donor. A single
proximity ligation library was prepared using the
ProxiMeta Hi-C Kit. Sequencing (2 x 150 bp) was
performed on an lllumina® NovaSeq™ 6000 instrument
(S4 flow cell). A total of 493,334,300 reads yielded

43 Gb of data after trimming.

For metagenomic shotgun sequencing, DNA was
extracted with the ZymoBIOMICS® DNA Miniprep Kit
(Zymo Research). Three libraries were prepared:

® For shotgun sequencing on the Illumina platform,
a library was prepared using the Nextera® XT
DNA Library Preparation Kit (lllumina). A total of
1,113,374,660 reads (2 x 150 bp) was generated
on an NovaSeq 6000 instrument (54 flow cell). This
yielded 94 Gb of data after trimming. A 618-Mb
assembly was generated with MEGAHIT? using
default parameters.

B Two libraries were prepared and sequenced on
long-read platforms at the University of Idaho
Core Facility (www.ibest.uidaho.edu/grc.php).
For sequencing on the PacBio® platform, a HiFi
SMRTbell® library was prepared and sequenced on
the Sequel® Il System. A single SMRT® cell yielded
8,439,956 reads, 68.1 Gb of data, and a 294-Mb
assembly. For sequencing on the Oxford Nanopore
(ONT) platform, a library prepared and sequenced
on a single MinlON® flow cell using standard
protocols. A total of 1,913,344 reads yielded 15 Gb
of data and a 339-Mb assembly.

Data Analysis and Results

For each of the three shotgun sequencing approaches,
metagenome-assembled genomes (MAGs) were
generated and annotated with the ProxiMeta pipeline

(proximeta.phasegenomics.com), as outlined in Figure 2.

For benchmarking purposes, data were also
analyzed using four conventional binning algorithms

(CONCOCT*, MetaBAT15, MetaBAT2¢ and MaxBin 2.07).

The outputs from these algorithms were combined and
used as the input into DAS Tool® to obtain a merged,
non-redundant set of bins for metabolic annotation.
The number and quality of MAGs generated from

the short-read assembly are shown Figure 3, which
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Figure 2. Overview of the ProxiMeta analysis pipeline. Shotgun
reads are assembled into a metagenomic assembly, which is
putatively clustered using conventional metagenomic binning
approaches in combination with inter-contig Hi-C linkages.
Conlflicts between the resulting groupings are subsequently
resolved, and final MAG clusters are annotated with respect to
major metabolic modules.
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Figure 3. Binning result comparison, showing the number of low
contamination MAGs reconstructed from the lllumina® assembly
using different binning approaches. Completion thresholds are
indicated in different shades of blue. Results from the four binning
tools were consolidated and optimized with DAS Tool. Completion
and contamination of MAGs was estimated with CheckM."°
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clearly shows that proximity-guided metagenome
deconvolution produces significantly more high-quality
MAGs than conventional binning.

To illustrate the benefits of more accurate and
complete MAG reconstruction in the context

of metabolic pathway analysis, heatmaps were
constructed to compare the metabolic modules
discovered in ProxiMeta™ MAGs with those identified
using shotgun sequencing and conventional binning.
The improvements achieved with the ProxiMeta
Platform are shown in Figure 4 (heat map for short read
assembly), in which each metabolic module (y-axis) was
color-coded based on whether it was identified (i) with
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both strategies (green); (ii) with ProxiMeta only (yellow,
potential gains); (i) with DAS Tool only (black, potential
false positives from conventional binning); or (iv) not at
all (blue). A summary of the annotation comparisons for
all three shotgun assembilies is given in Figure 5 on the
next page, and confirms that the ProxiMeta Platform
consistently identified more modules in more MAGs,
irrespective of whether the shotgun assembly was
derived from short- or long-read sequencing.

To validate these annotations, MAGs were mapped
to reference genomes (where available from NCBI),
to confirm the presence of genes associated with
each module. As shown in Table 1, a high percentage
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Figure 4. Comparison of metabolic modules identified in the short read assembly. Of the modules discovered with the ProxiMeta Platform only
(yellow), 89.5% were confirmed to be accurate (see Table 1). Of the modules identified using binning/DAS Tool only (black), 84.8% were confirmed
to be false positives introduced by conventional binning. Highlighted modules provide evidence of antibiotic resistance in several MAGs.

Only high-quality MAGs (completion >50%, contamination <10%) were included in the analysis. The MAGs listed on the x-axis exclude ProxiMeta MAGs for
which a corresponding MAG with a sequence overlap =50% could not be found in the DAS Tool bin set.
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Figure 5. Number of metabolic modules found in MAGs
re-constructed from lllumina, PacBio and Oxford Nanopore
metagenomic assemblies. Numbers for the lllumina assembly
were derived from the heat map in Figure 4. Numbers for the
PacBio and Oxford Nanopore assemblies were generated using
the same methodology.

of ProxiMeta™-only modules (potential gains) were
confirmed to be accurate, for both the lllumina shotgun
and PacBio HiFi assemblies. Support for gains from
proximity-guided ligation was less strong for the Oxford
Nanopore assembly, presumably due to the inherently
lower sequencing fidelity. In addition, the validation
process confirmed most of the binning/DAS Tool-only
modules to be inaccurate (false positives), indicating
that they should be removed from the analysis.

Even though a fecal sample from a healthy donor was
expected to be relatively "unremarkable" in terms of
metabolic annotation, this study produced evidence
of multi-drug resistance. A module associated with

Table 1. Summary of metabolic annotation validation.

llumina 89.5% 84.8%
shotgun (77 of 86) (31 of 37)
- 74.9% No binning/DAS Tool
PacBio HiFi (17 of 23) only modules
Oxford 52.2% 100%
Nanopore (12 of 23) (1of 1)

The second number in each set of parentheses correspond to the number
of metabolic modules (from the summary in Figure 5) that could be
validated (using =92% average nucleotide identity (ANI) over =50% of
the sequence between a MAG and reference genome in the NBCI_nt v4
database). For example, of the 331 ProxiMeta-only (yellow) modules in
the Illumina shotgun assembly, 86 modules could be validated and 77 of
those (89.5%) were found to be accurately assigned with the ProxiMeta
Platform. Similarly, 37 of the 87 binning/DAS Tool-only (black) modules
could be investigated, and 31 of those (84.8%) were confirmed to be false
(inaccurately identified in the MAG). Validation rates for other samples

or sample types may be higher or lower, depending on the novelty and
complexity of the sample.

fluoroquinolone resistance was identified in six MAGs
with both analytical approaches, in three additional
MAGs with the ProxiMeta Platform only, and in one
MAG as a potential false positive with binning/DAS
Tool. In addition, a bacitracin transport system was
identified with the ProxiMeta Platform only in two
MAGs (and was incorrectly attributed to a third MAG
using binning/DAS Tool). Only the ProxiMeta Platform
identified both antibiotic resistance mechanisms in one
of the MAGs (Clostridiales_29). These results suggest
that the limitations of conventional shotgun sequencing
and binning could have considerable consequences in
applications such as microbiome analysis or pathogen
surveillance.
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Summary

The ProxiMeta™ Platform is the only commercially
available technology designed for the application of
proximity ligation data to the deconvolution of complex
metagenomic assemblies. By incorporating information
about the physical relationship of sequence fragments
in the biological sample, the platform allows for more
accurate binning than traditional methods that rely
purely on shotgun data and statistical approaches.

In this study we have illustrated the key advantages of

the ProxiMeta Platform for metabolic pathway analysis.
Specifically, improved MAG recovery and quality were

confirmed to :

m offer significant gains in the identification of true
(validated) metabolic modules, as compared to the
best available conventional approach, and

B enable the removal (with high confidence) of
inaccurate annotations resulting from lower quality
MAGs reconstruction when using conventional
binning methods.

It should be noted that higher than recommended Hi-C
sequencing coverage was employed for this study. This
was done to match the depth of the shotgun assembly
(which was also unusually high), and extended

the ProxiMeta Platform's binning and annotation
improvements to the less abundant organisms in

the sample. When focusing on the more abundant
members of a complex microbial community, similar
advantages can be achieved with significantly less data.

The discovery of metabolic modules associated with
antibiotic resistance underlined the power of genome-
resolved metagenomics in detecting the reservoirs

of antibiotic resistance and identification of novel
biosynthetic pathways.

Metabolic pathway discovery in metagenomic samples
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Learn more about the ProxiMeta Platform at
phasegenomics.com/products/proximeta/ E .
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