Tag: AMR

Phase Genomics Announces Funding to Accelerate Discovery of New Lysin-Based Precision Antimicrobials

 

SEATTLE (March, 4, 2024) – Phase Genomics, Inc., a leading innovator at the forefront of genomics technology development, today announced $1.5MM in new funding from the Bill & Melinda Gates Foundation to fuel a new antimicrobial discovery platform. Leveraging the power of lysins, phage-derived proteins that selectively kill specific bacteria and archaea, the program aims to address two immediate threats that will shape the next century: a growing global antibiotic resistance crisis and the challenge of reducing global greenhouse gas emissions. The foundation of this effort rests on Phase Genomics’ proprietary global phage atlas, developed with support from the Gates Foundation. Under this project, Phase Genomics will deploy its platform to develop antimicrobial agents that bypass resistance against Campylobacter infections and methanogenic archaea in ruminants that drive global methane emissions.

“Our work at the frontier of microbiome research has unlocked a wealth of new insights on phages, the viruses that infect bacteria. Now, with support from the Gates Foundation, we’re harnessing our global phage database with the goal of improving human and environmental health and providing a critical alternative to traditional antibiotics,” said Ivan Liachko, PhD, founder and CEO of Phase Genomics. “The need for breakthrough therapeutics to combat the growing AMR crisis is urgent. We’ve built the right technology to identify and engineer lysin candidates primed to combat microbes both in environmental settings as well as emerging AMR biothreats and help overcome the industry-wide inertia facing novel antibiotic development.”

Derived from bacteriophage (or simply, phage) genomes, lysins are highly specific lytic proteins that kill bacteria by dismantling the cell wall structure, sparing off-target healthy microbes that are often collateral damage in traditional, systemic antibiotic treatment. Lysin-based antibiotics are well-suited for rapid, scalable biomanufacturing and deployment. Targeted bacteria are also much less likely to develop resistance to lysins than both traditional antibiotics and intact phages, providing a sustainable and durable framework to counter the accelerating antibiotic resistance threat. 

The new platform will build on data from Phase Genomics’ bacteriophage discovery engine which holds one of the world’s largest and most comprehensive collections of phage-microbe interactions containing hundreds of thousands of new host-resolved phage genomes. This continuously-growing phage interactome atlas is primed for the rapid discovery of wide-ranging classes of antimicrobial lysins derived from phages. The platform is superior to other approaches in both scale and accuracy, simultaneously resolving both microbial targets and the phages that infect them, with each pair containing a potential target-specific lysin candidate. Phase Genomics’ ProxiMeta™-powered phage atlas forms a deep well of target bacterial pathogens and new candidate biologics to tackle emerging drug-resistant pathogens and environmental biothreats.

This year-long project also marks a first-of-its-kind collaboration between Phase Genomics and Seattle-based Lumen Bioscience, who will assess lysin bioactivity in their robust and scalable microbial expression system.

Follow Phase Genomics on X and LinkedIn for the latest news and information.

 

About Phase Genomics 

Phase Genomics applies proprietary proximity ligation technology to enable chromosome-scale genome assembly, microbiome discovery, as well as analysis of genomic variation and genome architecture. In addition to a comprehensive portfolio of laboratory and computational services and products, including kits for plants, animals, microbes, and human samples, they also offer an industry-leading genome and metagenome assembly and analysis software.

Based in Seattle, WA, the company was founded in 2015 by a team of genome scientists, software engineers, and entrepreneurs. The company’s mission is to empower scientists with genomic tools that accelerate breakthrough discoveries.

 

Contact

Eric Schudiske

eric@s2spr.com

Bacterial pathogens have their own nemesis, and mimicking it can help solve the global AMR crisis

image of the globe surrounded by images of plants and viruses

 

Decades of antibiotic use – and abuse – are triggering a global rise in antibiotic resistance and limiting the usefulness of these life-saving drugs. In a nod to the adage, “The enemy of my enemy is my friend,” a solution may lie with bacteria’s oldest adversary: phages, the viruses that prey upon them. Our team at Phase Genomics is harnessing groundbreaking new metagenomic data and AI to tap into the evolutionary innovations of phages – and to eradicate dangerous microbial pathogens with surgical precision.

 

The need could not be greater. Fewer new antibiotics are hitting the market. The UN estimates that by 2050, worldwide deaths from antibiotic-resistant “superbugs” will overtake deaths from cancer.  Early 20th century scientists explored deploying phages to cure bacterial infections, an idea that has been recently resurrected. Phages are a staggeringly diverse class of bacteria-killers. By one estimate there are 1031 of them on this planet right now, vastly more than all living organisms combined. But using phages to cure infections has its own drawbacks: Mass production is difficult since phages only grow in bacteria, which can be difficult to culture, and it turns out bacteria have a barrage of defenses against intact viruses, imparting resistance against them.

 

While phages present one opportunity to help us stave off a return to the pre-penicillin past, we can also use their anti-bacterial weapons to launch a new arsenal rooted in synthetic biology. Phages produce proteins called lysins to destroy their hosts’ cell walls. These proteins have evolved over millennia to specifically target the phages’ hosts. They can be purified and used as precision antimicrobials, molecules that specifically kill the target bacteria without the collateral damage and resistance brought about by traditional wide-spectrum antibiotics.

 

Our team has used our unique genome sequencing technology to build the world’s largest catalog of the genomes of phages and the microbes that they attack – including the sequences of lysin proteins that they make. We’re harnessing this catalog to design, synthesize, and perfect lysin-based therapeutics that can attack bacterial pathogens safely, effectively, and with a surgical precision that today’s antibiotics lack.

 

Lysins hold tremendous advantages over traditional antibiotics. Antibiotics take out swathes of bacteria in our microbiomes that are essential for good health, leaving us more vulnerable to future infections – like the dreaded C. difficile – as well as to immune dysregulation. Yet most lysins target only the phage’s host species and its close relatives. And though antibiotic resistance spreads rapidly via plasmids, bacteria struggle to evolve resistance to exogenously introduced lysins.

 

Our collective knowledge of lysins to date comes largely from isolated experiments on phages or small-scale genomic studies. To deploy lysins as a life-saving solution, we need detailed knowledge of the intricate and intimate interactions between phages and bacteria. Phase Genomics has led this effort by building a vast catalog containing hundreds of thousands of phage genomes from different microbial environments. Our proprietary ProxiMeta technology employed for these experiments preserves unique information about essential ecological interactions in these microbiomes, including the host bacterial species that specific phages target. Thanks to this large and growing catalog of phage-microbe interactions, for many pathogenic bacteria, we can find specific lysins that could turn its cell walls into Swiss cheese.

 

We are using this foundational knowledge to build the first foundry for lysins. With support from the Bill and Melinda Gates Foundation, Phase Genomics is collaborating with Lumen Bioscience to design, grow, and purify lysins identified by our catalog. This proving ground will serve as the foundation for a future pipeline for lysin design – augmented by machine learning to hone target specificity, perfect performance and even create entirely new lysins with a desired target specificity. To make a custom-designed lysin against almost any bacteria, we would need to find a phage – and its lysin – that attacks it. This approach to lysin research and discovery has applications even beyond medicine, such as critically needed environmental remediation.

 

Our goal to develop therapeutic lysins would upend the existing paradigm for treating bacterial infections. Today, medical professionals have a shrinking pool of imperfect antibiotics that cut a swathe through our microbiomes to take out the bacterial bad guys. With lysins on the shelf as an option, we would be taking away this machete, and replacing it with a scalpel.

 

Far and wide: New technology reveals the long arm of viruses in microbial ecosystems

Hydrothermal vent on ocean floor depicting the microbial environment of the featured study

Hydrothermal mat sampling aboard R/V Roger Revelle using ROV Jason. Credit: R/V Roger Revelle, Scripps institute of Oceanography.

 

For decades, biologists largely studied microbes and their viruses in isolation, nurtured in laboratory cultures. Yet, to paraphrase the poet John Donne, no microbe is an island. In recent years, scientists have recognized this by studying microbes not as individual species, but as part of the larger microbiome: the communal ecosystems, each home to many different types of bacteria and archaea, in which most microbes reside. It is in these realms that microbes display their collective might. From guts to geysers, tiny tales of competition and cooperation within microbiomes have big effects on our health and environment — such as the spread of antibiotic resistance and the stability of food webs.

 

Revealing microbiome mechanics

Traditional, laboratory-based methods struggle to probe the individual components of the microbiome. But “metagenomics” allows us to study the community at large. Metagenomics is the sequencing of DNA from microbial communities, and metagenome-assembled genomes — or MAGs — put together using ever-more sensitive tools and processes, are increasingly able to resolve the inner workings of these complex ecosystems.

Recently, a collaboration between Phase Genomics and a team at Harvard University on a metagenomics project showed that phages — viruses that infect bacteria and archaea — have a surprisingly broad impact on the microbiome of a seafloor hydrothermal vent. Using a technique called proximity ligation (Hi-C), which cross-links DNA strands from the same cell before DNA extraction and sequencing, researchers reconstructed MAGs in this community and found that diverse microbes, including bacteria and archaea separated by billions of years of evolution, sported records of past encounters with the same phages. One explanation is that the phages have an unheard-of level of host diversity — one certainly not predicted by laboratory experiments. Another is that these deep-sea microbes may somehow “share” adaptive immunity across broad and deep evolutionary gulfs.

If phages have similarly broad impacts far above the ocean floor, scientists may have to rethink how communication, cooperation and evolution shape microbiomes — and how they impact the larger creatures, like us, that depend on them.

 

Tapping the archive

Microbiomes teem with phages. But deciphering their reach is no easy task. Thankfully, some bacteria and archaea are hoarders. Their CRISPR-based immune responses record past phage infections by inserting short fragments of phage genomes into a specific region of their own genome. Some studies have even sought to reconstruct the reach of phages in a microbiome by probing the content of these areas — known as spacer regions. Yet, the approach has its drawbacks.

“Spacer regions are rich in repeats, so they don’t get sorted well in the MAG assembly process,” said Yunha Hwang, a doctoral student at Harvard University. “That creates a bias regarding which spacers and phage fragments are ultimately assembled into MAGs.”

Hwang has studied these genetic archives of microbial immunity, and previously reported that, in a desert microbiome, phages may have broad host ranges.

“It was a preliminary result, but very exciting,” said Hwang. “I wanted to see if this was a wider feature of microbiomes, and I wanted to avoid that assembly bias.”

 

Achieving Hi-C depth in deep oceans

Hwang and Peter Girguis, a professor at Harvard, worked with Phase Genomics to employ a metagenomic approach centered on Hi-C, which, by preserving physical linkages between DNA fragments present in the same cell, eases the process of resolving repeat-rich regions like CRISPR spacers.

Hwang collected samples from the microbiome near a hydrothermal vent in the Gulf of California’s Guyamas Basin. Microbial communities like this employ “alternative” metabolic pathways — relying on the plume’s rich geochemical outflow for nutrients, energy and raw materials instead of the sun-based food webs more familiar to surface-dwellers. As soon as she reached port in San Diego, Hwang shipped the microbiome samples to Phase Genomics for cross-linking, DNA extraction, sequencing and MAG assembly.

The spacer regions of the MAGs assembled via Hi-C showed similar profiles of past phage infection compared to conventional spacer-sequencing and assembly. But the higher-quality Hi-C MAGs also eased the search for phage fragments within CRISPR spacers. And, as in Hwang’s study of desert microbiomes, individual phages in the hydrothermal vent microbiome had a broad reach — including bacteria to archaea.

“This was so baffling to us, because these are two separate domains of life,” said Hwang. “The ability for a phage to infect a host depends on fundamental properties of cell biology, and bacteria and archaea are so different — their membranes, their proteins, their genomes. So, what does this mean?”

Another puzzle is that bacteria and archaea that are linked by symbiotic relationships — such as eating one another’s metabolic leftovers — were also more likely to harbor genomic fragments of the same phages in their CRISPR spacers.

 

Spread the word

One theory to explain these findings is that phages within microbiomes, which can be hard-pressed for space in these close-knit communities, have evolved to infect hosts with radically diverse membrane compositions, host defenses and cell biology. But that is not the only possibility. Another is that symbiotic partners, separated by billions of years of evolution but united at the dinner table, may be sharing more than just a meal.

“In symbiotic microbes, when one population or species gets infected by a phage, there could be a selective advantage in sharing that adaptive, genetically encoded immunity with your partners,” said Hwang.

Future metagenomic studies of other microbiomes may help resolve these theories, or sire new ones. But the eventual explanations will undoubtedly force scientists to rethink how genetic information flows within microbiomes.

“How do bacteria and archaea build up ‘resilience’ in such closely packed communities?” said Hwang. “Perhaps one way that happens through selective pressure to share records of past phage infections widely. Keeping your neighbor healthy keeps you healthy.”

 

Sounds familiar

Once upon a time, far above the ocean floor, children played a game called “telephone”: passing a phrase from one person to another — in the form of a whisper — to see how the message changed as it is heard by each ear and transmitted by each voice.

It seems that bacteria, archaea and phages play similar games, which is just the latest surprise that metagenomics has revealed about microbiomes. It will certainly not be the last.

Pass it on.

 

 

Hi-C Technology Links Antimicrobial Resistance Genes to the Microbiome

 

Antibiotic resistance is a rapidly growing global health threat as bacteria share and spread resistance genes via plasmids and other mobile genetic elements. Several teams of researchers applied a new method to understand which microorganisms house genes for antibiotic resistance within complex microbiome communities.
Read the paper, Linking the Resistome and Plasmidome to the Microbiome.

 

ANTIMICROBIAL RESISTANCE ON THE RISE

 

According to the World Health Organization, antimicrobial resistance (AMR) in microbial pathogens is expected to take 10 million lives by 2050 if there are no new pharmaceutical or technological advancements dedicated to combating this pressing problem. For almost a century, medicine has made remarkable impact on human life by using antibiotics to treat infections, but this has led to a very concerning overuse problem, stoking an arms race between antibiotics and the pathogens they target. The CDC points out that at least 30% of antibiotic prescriptions are unnecessary and there is a massive contribution to antibiotic overuse in the food and agriculture industry where each year 130,000 tons of antibiotics are given to food animal livestock. Both of these problems correlate with the rise of AMR.

 

Though there are naturally occurring antibiotic-resistant bacteria, there are two mechanisms by which bacteria can acquire antimicrobial resistance genes (ARGs) and become resistant: 1) through spontaneous genetic mutations and/or 2) by acquiring genetic material from other microbes via plasmids, viruses, or other means of horizontal gene transfer. Due to the evolutionary pressure exerted on microbes by antibiotic overuse, pathogens resistant to these antibiotics within our body, hospitals, and the environment become reservoirs of transmittable AMR genes that can rapidly spread and accumulate within a single microbe contributing to the emergence of multidrug-resistant microbes commonly known as superbugs.

 

PROXIMITY-LIGATION (HI-C) LINKS ARG AND PLASMIDS TO THEIR HOSTS

 

One of the biggest obstacles faced by scientists when studying AMR is the inability to determine which microbes are carrying and spreading specific ARGs. Because these genes often travel on mobile elements, they can move dynamically between different species and can therefore be found in numerous organisms without one clear parental host. When attempting to sequence the DNA of a mixed microbial sample, all the DNA is purified from all the cells at the same time and the host-plasmid connection is severed, making it nearly impossible to determine where each mobile element came from or if they were shared among several species. In this newly published paper, researchers highlight a novel method for linking ARGs and other mobile genetic elements to their hosts directly from microbiome samples using the latest version of the proximity-ligation (Hi-C) data analysis tool, ProxiMeta Hi-C.

 

Phase Genomics CEO, Dr. Ivan Liachko, describes how our Hi-C platform solves one of microbiologists’ greatest problems pertaining to the linking of plasmids with their hosts.

 

Hi-C utilizes in vivo proximity-ligation which can assemble complete genomes down to the strain-level directly from mixed-population samples as well as physically links plasmids/ARGs to their host. This method is particularly useful for researchers studying the “dark-matter” of the microbiome because the method does not require culturing nor a priori information about a sample.

 

USING HI-C TO TRACK ARGs IN THE MICROBIOME

 

Lead author Thibault Stalder from the University of Idaho used the ProxiMeta Hi-C kit on a complex microbiome wastewater community, a suspected AMR reservoir, to learn more about which bacteria carry ARGs. After the Hi-C library was sequenced, Phase Genomics used the data to inform contig clustering of hundreds of genomes, most of which are novel, with our cloud-based software – ProxiMeta. Using the genome clusters found by ProxiMeta, the Hi-C linkages of each ARG-, plasmid-, and integron-bearing contigs to each genome were measured to determine which species physically hosted the relevant mobile elements.

 

ProxiMeta was able to cluster contigs into >1000 genome clusters and search for over 30 groups of ARGs, plasmids, and integrons which speed up the adaptive process of newly integrated ARGs (Figure 1, circle plot). For each of these genes, we inferred hosts (Figure 2). Moreover, these organisms generally belonged to families known to host each known gene (marked with an “X” in Figure 2), supporting the accuracy of the analysis. In the future, this information will allow us to track the spread of AMR in complex communities consisting of many diverse organisms.

 

Microbiome Antibiotic Resistance Genes and Plasmids

Figure 1: Hi-C linkage between ARGs, plasmid markers, and integrons among clusters belonging to Alpha, Beta, Gamma and Delta Proteobacteria.

 

Over 200 genome clusters had strong Hi-C links to ARGs, of which 12 had high-quality assemblies. These resultant genomes include both gram positive and gram-negative bacteria and most belonged to species that were previously unsequenced. ARGs were mostly linked to genome clusters belonging to the Gammaproteobacteria, Betaproteobacteria and Bacteroidetes (Figure 2, below).

 

Microbiome Antibiotic Resistance Genes AMR and Plasmids

Figure 2: Normalized Hi-C links between ARGs, plasmids, and families of bacteria.

 

 

FUTURE DIRECTIONS

 

This method can be useful for researchers not only studying the microbiome, but the virome as well. Phages, or viruses, also distribute genetic information amongst bacteria to influence host biology, much like plasmids. Several previous studies showed that in vivo proximity-ligation can be used to link phages with their hosts directly from mixed complex samples, much like was done with plasmids and AMR genes in this study. This information could be crucial to labs and companies that are now engineering phages that could replace the widespread use of antibiotics and combat AMR.

 

This year, antibiotic resistant bugs have infected more than 2 million people globally; 23,000 of those individuals will die because of our inability to fight these superbugs. By using ProxiMeta Hi-C to better understand the genomics of microbial communities suspected to be AMR reservoirs, researchers can identify ARG carriers down to the strain-level and quantify how prevalent these genes are. With further exploration, this tool could one day offer a new solution to limit the spread of these genes and reverse the trend of increasing antibiotic resistance and save lives.

 

BRING A HI-C KIT INTO YOUR LAB TODAY

 

Phase Genomics offers a wide variety of proximity-ligation products and services including Hi-C preparation kits and a range of different cloud-based bioinformatic analysis platforms. Power your microbiome research with ProxiMeta Hi-C and our easy Hi-C kits; assemble hundreds of complete genomes for novel, unculturable microbes, and associate plasmids with hosts directly from raw microbiome samples using ProxiMeta Hi-C.