Tag: genome

An Ancient Fungal Affair

two fungi exchange love letters in a whimsical forest scene

 

New genomic technology reveals the parental past of “ancient asexuals,” paving a route to crop engineering and soil remediation with symbiotic fungi

 

In a warming, crowded world, we need more help than ever from plants. But maximizing the bounty from crops — from food to fuel to fibers — means coaxing plants to draw minerals and nutrients from soil more effectively, and paying special heed to the tiny, often-overlooked fungi that make this possible.

Plant roots have symbiotic relationships with fungi that stretch back eons. For example, arbuscular mycorrhizal fungi, or AMF, have been cozying up to plant roots for at least 400 million years. In exchange for carbon-rich lipids from their hosts, AMF — named for the branch-like structures their bodies form within plant roots — help host defenses against pathogens, deliver water and increase absorption of nutrients rich in nitrogen, potassium and phosphorus. They also boost plant diversity.

Thanks to this ecological generosity, AMF are used as crop stimulants and in soil remediation. Their lipid lust also makes them good at carbon sequestration. Theoretically, engineered AMF strains could mount an even better performance in these essential tasks. But scientists have long viewed certain features of AMF, particularly their genetic structure and life cycle, as evolutionary puzzles that must be solved to make strain engineering possible and build better symbionts.

Working with Phase Genomics, scientists at the University of Ottawa recently overcame this barrier, successfully sequencing the genomes of four strains of the most widely studied AMF species, Rhizophagus irregularis. Using Phase’s proximity-ligation sequencing techology, they showed for the first time that the genomes of AMF are simultaneously more straightforward and more surprising than many mycologists had dared to dream.

Armed with this knowledge, scientists can plan new approaches to engineer AMF strains for applications in biomass production, soil remediation — and beyond.

 

The mysterious kary carryall

For years, the more scientists looked at AMF, the more questions they had. AMF bodies are essentially bags of haploid nuclei — tens of thousands, all sharing a common cytoplasm. And that’s not all.

“There were many, many outstanding questions about AMF,” said Dr. Nicolas Corradi, leader of the University of Ottawa team. “This was primarily because these fungi are always multinucleated and lack observable sex. It was suggested that AMF have an ‘oddball’ genetics and evolution.”

They were assumed to be “ancient asexuals,” who must’ve somehow thrived without the gene-shuffling benefits of sexual reproduction.

Dr. Corradi and his colleagues were determined to find out if that’s the case, and in the process began to shatter AMF’s asexual reputation. In 2016, they showed that Rhizophagus irregularis strains harbor evidence of sexual reproduction, including finding some of the genes needed for it. In some strains, all nuclei were genetically identical. But other, more robust and resilient AMF strains — termed heterokaryons — harbored two distinct populations of nuclei in their cytoplasm. More recently, Dr. Corradi and his team reported that the two populations of nuclei in heterokaryons change in abundance, depending on their host plant.

“But these were, however, based on fragmented genome datasets,” said Dr. Corradi.

To know for sure what was going on in AMF heterokaryons, the team needed a method to sequence the complete genomes of both populations of nuclei, allowing more complex studies of gene expression, genetic exchange and evolution in these puzzling fungal packages.

 

Would you prefer carrots or chicory?

Working with Phase Genomics, Dr. Corradi and his team employed a combination of proximity ligation (Hi-C) and PacBio HiFi data to sequence the genomes of both nuclear populations in four Rhizophagus AMF heterokaryon strains. Surprisingly, all four strains harbored genomes largely similar in structure — 32 chromosomes, with clear delineations between gene-rich and gene-poor regions — but highly divergent in sequence. For all four strains, the two populations of nuclei were essentially haplotypes, derived from parental strains during prior sexual reproduction.

Equipped with eight complete genomes — two haplotypes among four strains — the team followed-up with gene-expression analyses and discovered that each haplotype was transcriptionally active. But within an individual strain, haplotype gene expression patterns were not equal.

“AMF heterokaryons carry two haplotypes that physically separate among many thousands — potentially millions — of co-existing nuclei,” said Dr. Corradi. “This is unheard of in any other organism. But each ‘parental genome’ also regulates different biological functions, and these change depending on the plant host.”

They recorded at times dramatic shifts in haplotype abundance and expression depending on the AMF heterokaryon’s plant host — carrot versus chicory, for example. This suggests that each haplotype makes specific and unique contributions to the AMF heterokaryon’s phenotype. Future studies will have to tease out what role the plant host is playing, if any, in these shifting expression and abundance patterns.

 

Sex, but when? And more new mysteries

In assembling these long-sought genomes that co-exist within a common cytoplasm, Hi-C has revealed that Rhizophagus AMF heterokaryons are not as complex as once thought, or feared. Both haplotypes within each heterokaryon appear to arise through some past sexual reproduction event, contribute to the AMF’s phenotype and have unique gene expression patterns based on plant host. Their surprisingly ordinary genetic behavior — at least, ordinary for fungi — means it could be possible to engineer AMF that are even better symbionts for specific hosts, helping to boost crop biomass or improve resilience, for example. Engineered strains could also aid in soil remediation, or store carbon that would otherwise end up above ground or in the air.

The findings, coupled with the team’s previous experiments, also bring new mysteries into focus: AMF strains appear to employ a mixture of sexual and asexual reproduction, similar to other fungi. But scientists have never witnessed AMF sexual reproduction — a potentially useful tool for engineering strains. The new genome sequences will also serve as a point of comparison as scientists investigate whether the hundreds of other AMF species are similar to Rhizophagus — and their potential to transform agriculture.

The Highest-Quality Genomes: Q&A on Cannabis Genomics

 

Co-author Kevin McKernan of Medicinal Genomics talks more about the past, present, and future of cannabis genomic research. Read more about his newly published cannabis genome assembly project using Proximo Hi-C scaffolding featured in The Genetic Literacy Project.

 

What is the difference between hemp and marijuana? How can we use genomics to answer this question?

 

McKernan: The legal definition of hemp is any Cannabis sativa that has less than 0.3 percent THC acid, or THCA. Historically, hemp has been grown for fiber and the exceptional nutritional content of its seed. THCA expression is genetically controlled at what has been historically referred to the Bt:Bd allele. Next-generation sequencing technologies are giving us our first glimpse of this complicated locus.

 

Why are you interested in assembling the Cannabis genome? What are you hoping to accomplish?

 

McKernan: A refined genome assembly will enable molecular breeding programs to deploy marker-assisted selection for yield, flowering time, pest resistance and rare cannabinoid expression. It will likely shed light on the heritability of hermaphroditism and apomixis. A clearer picture of the genes involved in cannabinoid and terpenoid expression will enable more intelligent breeding and synthetic biology programs.

 

Which genes are responsible for cannabidiolic acid production and how do these genes vary between the cultivars?

 

McKernan: The Cannabis plant makes 113 different cannabinoids. There are three well-understood cannabinoid synthesis genes. These highly similar genes all compete for a common precursor molecule. Mutations in these genes affect gross cannabinoid expression. A more refined reference may enlighten us to the genetic variants that can more accurately estimate THCA levels to segregate hemp and drug-type seed stocks.

 

What other hidden gems did you find in the Cannabis genome after you finished the assembly?

 

McKernan: The most exciting picture is the 2.1Mb CBCAS (cannabichromenic acid synthase) gene cluster seen the Jamaican Lion assembly. This has 9 tandem copies of CBCAS all directionally orientated that are 99.4-99.9 percent identical and separated by 30-80kb long terminal repeats. This region has been an assembly knot for over seven years and I think the only reason it is visible to us today is due to novel sequencing tools we didn’t have in 2011.

 

Why is the Cannabis genome so difficult to assemble? Are there unique genomic features (i.e. copy number variants, special repeat classes, segmental duplications) that are especially troublesome?

McKernan: Its 1.07Gb genome consists of 10 chromosomes, with 73 percent repeat, 66 percent AT and 0.5-1 percent polymorphic. The genes that contribute to chemotype are under the most selective pressure and have hijacked long terminal repeats to enable gene expansions. We had suspicions of this back in 2011 but could never assemble the region to prove it.

 

Why was it important to obtain chromosomes for your assembly? How did Hi-C help?

 

McKernan: The Pacific Biosciences assembly delivered us an assembly that was an amazing leap forward from the Illumina assemblies, but it is not chromosomal in scale. Hi-C has helped to organize these contigs into chromosomes and it can do this without having to make linkage maps.

 

What did you find to be most useful in working with Phase Genomics?

 

McKernan: Hi-C is very complimentary to PacBio sequence data and is the only technology that delivers long range information without having to make high molecular weight DNA. This is very important in Cannabis as it is difficult to get high molecular weight DNA out of the plant.

 

What would you like other researchers, breeders or regulators to take away from your high-quality genome assembly? How do you think this genome assembly will be utilized in the future?

 

McKernan: We also need dozens of genomes sequenced to the quality level of Jamaican Lion to get a full picture of these complex cannabinoid loci. We need Hi-C libraries to better understand the microbiome of the plant, so we can more intelligently manage pathogenic threats that affect yield. Many endofungal bacteria like Ralstonia are found in metagenomic sequencing studies in Cannabis flowers and can be a risk to consumers and negatively impact plant yield. Ralstonia is also notorious for contaminating many metagenomic studies due to contamination in library construction kits. We suspect Hi-C will play important roles in segregating live versus dead DNA and resolving these contamination problems.

 

What regulatory challenges do you run into when working on Cannabis genomics?

 

McKernan: The biggest issue at the moment is that the movement of tissue, other than sterilized stalk, is currently federally prohibited in the U.S. This makes RNA studies very challenging as RNA isolation has to be performed in the field. Movement of DNA or cross-linked chromatin is legal, so this is a compelling case for the use of Hi-C in the Cannabis field (insert Hi-C pun here). Phase Genomics’ kits were critical, as shipping certain tissues is restricted.U.S. federal funding also remains restricted. We turned to the Dash Distributed Autonomous Organization for funding to rapidly sequence and publish the genome. We applied for funds in May of 2018 and had the first assembly public on August 2. This is a very generous contribution by Dash because any U.S. university that attempts to handle the plant places their federal funding at risk.

 

What genomic evidence suggests that Cannabis has been selectively bred by humans?

 

McKernan: I think the elevated THCA levels witnessed since prohibition — combined with the long terminal repeat-driven expansion of the synthase genes — is the best evidence we have.

 

What is your favorite fact and what is your least favorite misconception about Cannabis?

 

McKernan: My favorite thought experiment regarding the rapid reproduction of Cannabis is that its genome is very likely spreading through space and time more quickly than the human genome, and it evokes much of David Sinclair’s work on Xenohormesis. My least favorite misconception is the false dichotomy of medical versus recreational cannabis consumption. I think this showcases our reactionary health-care mindset as opposed to the preventative mindset we need to strive for. If you disregard recreational use, you are likely going to require more medical use. These compounds have been in our diet for thousands of years. We now know mutations in human endocannabinoid system-related genes are associated with neurological phenotypes and a large class of idiosyncratic diseases are now being recognized as clinical endocannabinoid deficiency (CED). It was incredibly naïve and destructive to remove cannabinoids from the American diet in 1937.

 

What do you think the future holds for the cannabis industry?

 

McKernan: In states that legalize cannabis, there is a 15 percent reduction in alcohol consumption, a 25 percent reduction in opiate overdoses, a 17 percent decrease in Medicare opiate usage and a 25 percent reduction in general pharmaceutical use. There is a 10 percent reduction in suicide and a 72 percent reduction in PTSD nightmares. The benefits to epilepsy have survived FDA scrutiny. This is the most disruptive market force we have seen in healthcare since the internet and next-generation sequencing. We are now just witnessing the alcohol industry take multi-billion dollar positions in the cannabis industry. It is only a matter of time before the pharmaceutical industry begins to hedge their losses as well. I am betting against the endocannabinoid mimetic known as acetaminophen and in favor of the less-toxic phytocannabinoids like cannabidiol.

 

 

About Phase Genomics

Seattle-based Phase offers research services and kits based on its Hi-C and proximity-ligation technologies, which enable chromosome-scale genome assembly, metagenomic deconvolution, and the analysis of structural genomic variation and genome architecture. Phase Genomics offers Hi-C genomics tools for genome scaffolding and phasing. Learn more about Proximo and bring the power of Hi-C into your lab today by purchasing one of our Hi-C kits.

How it Works: Proximo Hi-C Genome Scaffolding

Q&A with Co-Authors About Bees, Mites, and Their Genomes

Co-authors Dr. Alexander Mikheyev of the Okinawa Institute of Science and Technology and Dr. Jay Evans from the U.S. Department of Agriculture’s Bee Research Laboratory had such great answers that we wanted to share some of them. This research was also featured in ZME Science.

Why is it important and useful to have a high-quality genome for Varroa species? Is there any combined value with the recently published bee genome?

Dr. Mikheyev: Understanding the mechanisms of parasitism requires detailed information about the organization of the genome. Many recent ideas for fighting Varroa rely on molecular tools, which in turn rely on genomic data. Furthermore, a good genome enables us to understand the coevolutionary interactions between mites and the bees. For now, our studies are focused on understanding how the mite has evolved to become a better parasite. However, my lab is also looking at the bee side of the coevolutionary interaction. Having high-quality genomes for both will allow us to identify genomic regions and genes involved in coevolution.

Why did you choose to use Hi-C? Why did you need chromosomes for your genome assembly?

Dr. Evans: From prior genome efforts, we had no information on the physical positions of mite gene features. Now with these in place, we can leverage synteny information from other arthropod genomes and narrow searches for some hard-to-find proteins like olfactory receptors, which often occur in clusters. Generally, the improved genome helps us know what might be unique to Varroa — and therefore a novel clue into their biology and control.

Dr. Mikheyev: One element of this study was to look at patterns of gene duplication, which could indicate diversification of particular gene families. Having a contiguous genome allows us to better localize these duplications and confirm that the different copies are homologous. In the future, when we’ll be looking at signatures of selection, a really powerful approach is to identify genomic regions with reduced genetic diversity. Having adequate chromosomal scaffolding will be essential there.

What genomic clues were found in the two Varroa species that may contribute to parasitism?

Dr. Evans: We found a clear set of genes for the proteins — olfactory receptors and others — that these mites must be using to react to their bee hosts. Hopefully, knowing these proteins will lead to smarter controls and insights into why each species maintains a specific host preference.

Dr. Mikheyev: For us, the most striking finding is this: The evolutionary trajectories of both mites, despite their similarities and close relatedness, were completely dissimilar. At this stage, it is still a bit hard to tell specifically what the selective pressures were and what the mites are adapting to. Curiously, in both species, genes involved in stress tolerance and detoxification were already under selection. This most likely happened before they ever faced miticides and suggests that they may have pre-adapted strategies for dealing with our chemical warfare strategies against them. We hope to tackle this in an upcoming study looking at population-level differences between mites adapted to original and novel hosts.

How do you hope these genomes will be used to help save honey bees?

Dr. Evans: Prior genome drafts had enough gaps that we missed candidate proteins for mite control. These mite genomes will lead to focused efforts to target pathways or traits not found in bees by techniques like small molecules, biological controls, and RNA interference.

Dr. Mikheyev: They can be used to develop new strategies for Varroa control. Also, in upcoming studies looking at how mite populations are adapted to original vs. switched hosts, we hope to identify genes and genomic regions that are specifically important in host switches.

Is there any genomic evidence that the western honeybee could be developing resistance to these pests?

Dr. Evans: Yes. Some bee breeders are targeting these traits, from behaviors to virus resistance. A recent, improved assembly of the honey bee genome — aided in part by Hi-C sequencing — is being used for trait identification and marker-assisted breeding right now.

Dr. Mikheyev: They most definitely are. Intriguingly, wild populations of honey bees seem to evolve tolerance to the mites relatively quickly. In one of my favorite studies, a USDA-monitored population in Louisiana first saw high mortality upon the arrival of Varroa, but a few years later colonies lived even longer than before. There are resistant populations known in the U.S. and in Europe, and resistance is a trait that can be selected. How this adaptation takes place in the bee is really interesting, and something we’ll continue to look into.

Isolating Varroa mites from bees involves a creative use of powdered sugar. How do you think this technique came about?

Dr. Mikheyev: We don’t know. The papers describing this method are pretty prosaic. It seems that in the late 1980s, wheat flour was used to control Varroa by knocking them off the bees — and eventually, someone tried sugar.

Dr. Evans: Since they’re attached to their bee hosts, researchers have used a variety of ‘irritants’ to get mites to fall off. Powdered sugar is safe for the bees and might even be an extra calorie boost. The bees pull sugar from each other and the mites fall off — mostly because of the sugar itself, but also because the grooming bees find them.

What is your favorite weird food that involves honey?

Dr. Mikheyev: It’s not really a food since it is honey, but I love the fact that the giant honey bees of Nepal make psychedelic honey from Rhododendron flowers. The story is worth tracking down for no other reason than the dramatic photos of the men that harvest this honey from sheer cliffs.

Dr. Evans: Honey lemonade. Sorry, I am required by my kids to not say weird things.

The Era of Platinum Genomes Has Arrived

Platinum Genome

 

Phase Genomics is dedicating the rest of this month (January, 2019) to the beginning of “The Era of Platinum Genomes” to celebrate recent advancements in genome assembly; researchers now have the ability to generate chromosome-scale, fully-phased diploid genome assemblies for any species by combining two technologies: long-read sequencing data from PacBio and Phase Genomics’ Hi-C.

 

At the end of this month, we will be giving away a “Platinum Genome Project” which includes a full Hi-C service or kit project to an attendee at the International Plant and Animal Genome Conference 2019 (PAGXXVII). This project includes using Proximo Genome Scaffolding to generate chromosome-scale scaffolds and FALCON-Phase to phase haplotypes across the entire genome. Attendees can enter the raffle by stopping by our booth (#208) throughout the conference, or enter using the form at the bottom of this page. Stay tuned for the winner announcement on January 31st, 2019 by following our twitter account @PhaseGenomics. Offer subject to sweepstakes terms. No purchase necessary.

 

WHAT ARE PLATINUM GENOMES?

 

Much like the music industry ranks albums as gold or platinum, genomes can also be classified using the same terminology based on the completeness of the assembly and quality of phasing (i.e. haplotype resolution). High-quality genomes have complete chromosomes and haplotype resolution in critical sections of the genome qualify as a “gold genome,” whereas “platinum genomes” are assemblies with full chromosome scaffold and haplotypes resolved across the entire genome.

 

Since publishing the first human genome assembly, research from the 1000 genomes project and other groups have created several platinum human genomes to represent different human populations. In fact, one of our latest projects in collaboration with PacBio, generated the most contiguous, haplotype resolved, human genome to-date. However, there are only a few platinum genomes for non-human organisms, as scaffolding and haplotyping entire genomes is very labor-intensive using standard tools.  We are excited to offer tools such as Proximo and FALCON-Phase to help usher in the era of straightforward platinum genome assemblies to researchers studying plants and animals.

RESOURCES

Phase Genomics Workshop at PAGXXVII: Add it to your schedule.

Standard Projects Outline 

Phase Genomics Platinum Genome Sweepstakes guidelines

 

Phase Genomics and Pacific Biosciences Co-Developing new Genome Assembly Phasing Software

Phase Genomics and Pacific Biosciences logos

“FALCON-Phase” – an algorithm for producing diploid genomes.

 

Phase Genomics has entered into a co-development agreement with Pacific Biosciences to develop FALCON-Phase, a software module that combines Hi-C and PacBio® highly-accurate, long read sequencing data to produce fully-phased diploid genome assemblies. The software will be released later this spring.

FALCON-Phase augments PacBio Single Molecule, Real-Time (SMRT®) assemblies with Hi-C proximity-ligation data, generating accurate, fully-phased diploid assemblies. Specifically, it uses Hi-C’s chromatin proximity information to identify sequences belonging to the same parental chromosome in genome assemblies produced by PacBio’s FALCON-Unzip software, greatly reducing haplotype switching along the primary assembly.

Furthermore, by combining Phase Genomics’ Proximo Hi-C genome scaffolding technology with FALCON-Phase, users can fully reconstruct maternal and paternal haplotypes on a chromosomal scale. The end result is a diploid set of chromosome-scale scaffolds, or two fully-phased genomes for the same data and labor cost typical for a single genome project.

FALCON-Phase genome Phasing Graph

FALCON-Phase groups long-read contigs into two separate haplotypes based on Hi-C data. Red and blue edges show contigs connected to the same haplotype, while black edges show homologous contigs connected to both haplotypes. Colors were assigned based on known phasing of assembly, which was not otherwise used to inform FALCON-Phase analysis.

These high-quality phased haplotypes can be leveraged to improve the efficiency of agricultural breeding programs, and could help identify disease-causing genomic variations in humans.

Prof. John Williams, Director of the Davies Research Centre at the University of Adelaide, Australia, wrote, “We are interested in expression of imprinted genes and for this work the availability of haplotype-resolved genome assemblies is an important advance. The release of software that enables the creation of haplotyped genome sequence assembly will revolutionize exploration of genome function. The FALCON-Phase software has this ability and can be applied retroactively to SMRT assemblies, as long as Hi-C data are available. Therefore, even pre-existing genomes can potentially be upgraded to haplotyped assemblies for little or no cost.”

Haplotype-resolved genome assembly is an exciting emerging field. Currently, there is only one other method, Trio Canu, which, unlike FALCON-Phase, requires the parents and offspring to be sequenced, adding an additional cost. For many species, it is not possible to collect a trio in the wild and breeding is often not an option. Other Hi-C phasing techniques exist, but they phase genetic variants, not genome assemblies.

The addition of ultra-long genomic interactions captured by Hi-C to PacBio assemblies is very powerful and presents a straightforward solution to a problem experienced by almost all genomic researchers working with diploid organisms.

A formal announcement with more information is coming in the next month. For more information, email us at info@phasegenomics.com.

 

Pacific Biosciences, the Pacific Biosciences logo, PacBio and SMRT are trademarks of Pacific Biosciences of California, Inc.

A sweet new genome for the black raspberry using Proximo™ Hi-C

Black raspberries

The Black Raspberry, known for its sweetness and health benefits studied further to reveal its chromosome-scale genome.

What is a black raspberry you may ask? Jams, preserves, pies, and liqueur are just a few of the delicious products made with black raspberry. The black raspberry offers much more beyond its exquisite flavors. For instance, did you know it contains a compound called anthocyanins that is used as a dye? It is also used in anti-aging beauty products and contains compounds that may help fight cancer. The useful properties of black raspberry are encoded within the genome.

A multi-national team of scientists have built a full map of the Black Raspberry genome. Teams from New Zealand, Canada, and the U.S.A. contributed to the project led by Drs. Rubina Jibran and David Chagné. The work was published in Nature, Horticulture Research. In the project they leverage Proximo™ Hi-C to order and orient short-read contigs into chromosome-scale scaffolds.

A chromosome-scale reference genome is an important step for basic biology and for breeding programs. Breeders can use this genome while crossing plants to select for traits like color or taste.  To learn more about how Hi-C technology was used to improve the black raspberry genome we contacted Dr. Chagné and Dr. Jibran for a Q&A session. We also wanted their take on the scientific value of Proximo Hi-C and to share their experiences working with us.

 

What is a black raspberry? How is it different from the blackberries we have in Seattle?

The black raspberry we used is no different from the ones found in Seattle. Actually, I remember seeing some black raspberries (also called black-caps) at Pike market few years ago! Washington and Oregon are the largest producers of this delicious crop. Raspberries belong to the genus Rubus, which includes red (Rubus idaeus) and black (R. occidentalis) raspberries, blackberries, loganberries and boysenberries.

 

There are many curious uses of black raspberries, what’s yours?

Black and red raspberries are great on top of Pavlova, alongside slices of kiwifruit. Pavlova is New Zealand’s iconic dessert served around Christmas time, which is the berry fruit season down under here.

 

What are molecular breeding technologies? What are some of the traits in black raspberry you’d like to breed for?

Molecular Breeding techniques use DNA to inform selection decisions. My colleague Cameron Peace from Washington State University did a very good review about the use of DNA-informed breeding in fruit tree.  Plant & Food Research is leading in the use of molecular tools for breeding fruit species, for example we are using genetic markers to predict if apple seedlings carry certain loci for black spot resistance or if they are likely to be red fruited. The breeding goals for Plant & Food Research’s raspberry breeding programme are high fruit flavour, berry anti-oxidant content, pest and disease resistance and higher productivity.

 

The initial black raspberry genome assembly was built from short-read data. Why did you choose to scaffold the short-read contigs rather than create a new long-read assembly? Would you get chromosome scale contigs from a long-read assembly? 

Actually we took both approaches and we decided we would like to see how much of the short-read assembly we would be putting together using Proximo Hi-C. A long-read based assembly will be released soon and the comparison of both assemblies will be extremely informative on what strategy to use for future assemblies of other crop species.

 

How did you validate the Proximity Guided Assembly (PGA) scaffolds? How did you correct errors in the scaffolds?

The PGA for black raspberry was first validated by aligning it to a linkage map and then by aligning it to the genome of strawberry (Fragaria vesca) as they have syntenic genomes.

 

What was the process like in working with Phase Genomics? Would you recommend them to your colleagues?

I enjoy a lot working with Phase Genomics. Black raspberry is not the first genome that we collaborated with Phase Genomics, as we had assembled genomes for kiwifruit and New Zealand manuka previously. The way we work with Phase Genomics is very iterative and they are excellent at trying new methods and assembly parameters until we are satisfied with our assemblies. Every organism has its own challenges when it comes to genome assembly and working with Phase Genomics in a very collaborative way is extremely useful. I have recommended Phase Genomics to colleagues.

New Video: From Contigs to Chromosomes

Phase Genomics CEO and Founder Ivan Liachko, Ph.D. offers an inside look at our ProxiMeta™ Hi-C and Proximo™ Hi-C technology. He explains in this 40 minute presentation how Hi-C is revolutionizing genome and metagenome assembly. Watch “From Contigs to Chromosomes” now and reach out to http://phasegenomics.com/contact-us/ with any questions.

Thanks to IMMSA for hosting this webinar.

Orphan Crop Gains Reference Genome with Proximo Hi-C

Amaranth genome assembly brought to the chromosome-scale using Phase Genomics’ Proximo Hi-C technology. 

 

“Orphan crops” are growing in popularity because they have the potential to feed the world’s expanding population.  You may have heard of orphan crops like quinoa or spelt, but have you heard of amaranth?  The amaranth genus (Amaranthus) is a hearty group of plants that produce nutritious (high in protein and vitamin content) leaves and seeds.  Amaranth species grow strongly across a wide geographic range, including South America, Mesoamerica, and Asia.  Amaranth was likely domesticated by the Aztec civilization and has been a staple food of Mesoamericans for thousands of years. Breeders wish to enhance amaranth’s beneficial properties like drought resistance, nutrition, and seed production to improve the usefulness of amaranth as a food source.  However, effective plant husbandry requires genetic and genomic resources, and building these resources has been inhibited by the high cost of genome sequencing and assembly.

 

Genome assembly Hi-C Orphan Crop

Dr. Jeff Maughan (left) and Dr. Damien Lightfoot (right), are the primary authors of the amaranth genome paper.

Dr. Jeff Maughan, professor at Brigham Young University, is a champion of orphan crop genomics.  Over the past year, Dr. Maughan and his team built a reference-quality amaranth genome on a tight budget.  They built upon an earlier,  short-read assembly by adding Hi-C data, which measures the conformation of chromatin in vivo, as well as low coverage long reads and optical mapping data.  After using optical mapping to correct assembly errors in the short read assembly, the Hi-C data was used to cluster the short genome fragments into nearly complete chromosomes using Phase Genomics’ Proximity-Guided Assembly platform, Proximo™ Hi-C, Then, the long reads were used to close remaining gaps on the chromosomes.  This cost-effective strategy recovered over 98% of the 16 amaranth chromosomes.

 

The completed reference genome provides an important resource for the community and will boost the efforts of plant breeders to unlock more agricultural benefits for amaranth.  In their paper, Dr. Maughan’s team demonstrated the utility of the reference quality genome in at least two ways.  First, they looked at chromosomal evolution by comparing the amaranth genome to the beet genome, which enables researchers to better understand amaranth in the context of how plants evolved, and second, they mapped the genetic locus responsible for stem color, which clarifies the scientific understanding of a useful agricultural trait.  Dr. Maughan points out that both of these experiments would have been impossible without the chromosome-scale genome assembly afforded by Proximo Hi-C.

 

A high-quality reference genome is the first of many important steps towards creating a modern breeding program for amaranth. We contacted Dr. Maughan to learn more about how he is improving amaranth genomics and the importance of orphan crops.

 

What is an orphan crop? 

According to the FAO (Food and Agriculture Organization of the United Nations) the world has approximately 7,000 cultivated edible plant species, but just five of them (rice, wheat, corn, millet, and sorghum) are estimated to provide 60% of the world’s energy intake and just 30 species account for nearly all (95%) of all human food energy needs.  The remaining species are underutilized and often referred to as “orphan crops”.

 

How is genomics relevant to orphan crops?

Would you invest your entire 401K savings in just three stocks?  In essence, that is what we are doing with world food security.  This comes with tremendous risk.  If we are going to diversify our food crops, it will be with these orphan crops.  Modern plant breeding programs leverage genomics to significantly enhance genetic gain (yield), such methods will undoubtedly expedite the development of advanced varieties in orphan crop species.

 

What are the challenges facing researchers interested in orphan crop genomics?  How have you overcome them?

Funding has long been the main obstacle to developing genomic resources for orphaned crops.  The development of cheap, high-quality next-generation sequencing technology has dramatically ameliorated this problem – making genomics accessible for most plant species.

 

You used two scaffolding technologies for your assembly, Hi-C, and BioNano. How did they compare?

Both technologies are extremely useful and complementary but address different genome assembly challenges.  The Hi-C data allows for the production of chromosome length scaffolds, while the BioNano data allows for fine-tuning and verification of the assembly.

 

Beyond building a high-quality genome assembly, what other genomic resources are required to encourage the adoption of orphan crops?

While genomic resources (such as genome assemblies and genetic markers) are fundamental for developing a modern plant breeding program, often what is missing with orphan crops is the collection of diverse germplasm (or gene bank) that is the foundation of a hybrid breeding program.  The U.S. and other nations have extensive collections (tens of thousands of accessions) that serve as the genetic foundation for staple crop breeding programs – unfortunately, such collections are minimal or non-existent for orphan crops.

 

Who stands to benefit the most from a complete amaranth genome?  How do you disseminate your work to them?

We collaborate extensively with researchers throughout South and Central America, where amaranth is already valued as a regionally important crop.  Dissemination of our research occurs though traditional methods (e.g., peer reviewed publications) as well as through sponsored scientist and student exchanges.

 

Amaranth is used in a variety of interesting foods, what’s your favorite dish?

Alegría, which is made with popped amaranth and honey, and is common throughout Mexico.

 

Hi-C Used to Assemble Extremely Large, Difficult Barley Genome

Barley is the 4th most cultivated plant in the world and has been a reliable food source for over 10,000 years. Genome Web reports on the exceptional state of the genome assembly and how researchers used Hi-C technology to tackle this extremely complex genome.

 

The barley genome, like many other grains, is notorious for being extremely difficult to assemble due to extensive polyploidy, long repeat regions, and its large genome size (5.3 Gb). However, the Barley Genome Sequencing Consortium (IBSC) used Hi-C to tackle this genome assembly, producing chromosome-level scaffolds representing over 95% of the genome in an attempt to understand the biology of this widely cultivated plant. After completing the assembly, the researchers began annotating the genome and identified over 87,000 different genes, publishing their findings in Nature.

 

Obtaining reference-quality assemblies for complex genomes, such as barley, used to be an extremely challenging endeavor. With Hi-C, obstacles like polyploidy and multi-Gb genomes are manageable due to its ability capture ultra-long-range genomic contiguity information from unbroken chromosomes, replacing the need for genetic maps. This ability enables researchers to answer questions otherwise difficult or impossible, including structural variation, complex gene structure, gene linkage, gene regulation, and more. While the researchers performed the barley assembly themselves, Phase Genomics’ Proximo Hi-C service makes it easy for any researcher to obtain similar results and has been used to assemble hundreds of genomes to chromosome-scale over the past two years, including complex genomes like barley.

 

Read more about the barley genome on Genome Web.